A DERIVATION OF THE DISTRIBUTION OF THE INDIVIDUAL BIOEQUIVALENCE METRIC Sanford Bolton, M. Mohan Sondhi, and Charles Diliberti The bioequivalence metric as defined by Hyslop is: $$\phi = [(\mu_t - \mu_r)^2 + \sigma_i^2 + 0.5 \sigma_t^2] / \sigma_r^2 - 1.5.$$ where μ_t , μ_r are the means of the pharmacokinetic parameter for the test and reference products, respectively σ_t^2 , σ_r^2 are the within-subject test and reference variances, $\sigma_i^2 \text{ is the variance of } (\mu_t - \mu_r).$ Let \overline{X}_t , \overline{X}_r , S_i^2 , S_t^2 , and S_r^2 be the sample estimates of μ_t , μ_r , σ_i^2 , σ_t^2 , and σ_r^2 , respectively, and let $\hat{\phi}$ be the sample estimate of ϕ derived from them. The problem is to find the 95th percentile of the probability distribution of $\hat{\phi}$ and accept bioequivalence if this value is below the FDA specified value Hyslop *et al* find the upper 95% confidence interval of a linearized version of the metric We, instead, find the probability density function (pdf) of $\hat{\phi}$, whose integral gives us the cumulative distribution If the 95% point of the cumulative distribution is below the FDA defined value we accept bioequivalence - The PDF of $\hat{\phi}$ can be determined if the joint distribution of \bar{X}_t , \bar{X}_r , S_i^2 , S_t^2 , and S_r^2 is known. - In general this would be a formidable task. - However, under the usual assumption of statistical independence of these variables, the computation is quite feasible. - The main steps in the derivation are summarized in the next two vugraphs. For ease of notation define the following random variables: $$Y = (\overline{X}_t - \overline{X}_r)^2,$$ $$Z = S_i^2,$$ $$U = 0.5 S_t^2,$$ $$V = S_r^2.$$ In terms of these, define the further intermediate variables $$W = Y + Z$$ $$G = W + U.$$ Then the random variable $\hat{\phi}$ is given by $$\hat{\phi} = \frac{G}{V} - 1.5.$$ • A knowledge of the PDF of \overline{X}_t and \overline{X}_r (assumed gaussian), gives the PDF of Y (Need formula for the PDF of the square of a random variable) • Next compute the PDF of W (Need formula for the PDF of the sum of two independent random variables) - Similarly compute the PDF of G = W + U. - Next compute the PDF of G/V (Need formula for the PDF of the ratio of two independent random variables) • Finally, shift the PDF of G/V by 1.5 to get the PDF of $\hat{\phi}$. Table I. Comparison of Results of Proposed Method to Hyslop's method for assessing bioequivalence for various parameter estimate values. | Nª | Mean
Diff | S²I | S^2 t | S^2r | Hyslop | Proposed | |-----|--------------------------|------------------------------|------------------------------|------------------------------------|---|---| | 122 | 0.0
0.0
0.0
0.2 | 0.02
0.02
0.02
0.12 | 0.02
0.02
0.03
0.12 | 0.0125
0.01
0.01
0.065 | -0.0286(P) -0.0007(P) +0.0046(F) +0.0226(F) | 1.635(P) 2.46 (P) 2.79 (F) 2.90 (F) | | 12 | 0
0.05
0
0.07 | 0.04
0.03
0.05
0.05 | 0.02
0.01
0.04
0.04 | 0.0475
0.03
0.0475
0.0475 | -0.0324(P) -0.0087(P) +0.0004(F) +0.0082(F) | 1.69 (P) 2.295(P) 2.85 (F) 3.175(F) |